Treetops protect forest life from global warming

The forest canopy mitigates peak summer temperatures for the understorey. When that shade disappears, the organisms living there suffer.

The cooling leaf canopy protects forest organisms from extreme temperatures and has a significant influence on their adaptation to global warming, according to this study which was published in the journal Science.

The climate in the forest is not the same as the climate outside the forest. That much is clear to anyone who has taken to the woods to seek respite from the heat on a hot summer day. However, scientific studies consider ‘climate warming’ to be the warming measured by many thousands of standardised weather stations all over the world; these are generally located in open spaces and measure the temperature at a height of 1.5 to 2 metres from the ground. Yet the majority of all land-based species live in forests, with many dwelling in the understorey and the soil. As a result, climate data gathered from open spaces are only of limited relevance to them.

Beech forest in France. (Photo: Jonathan Lenoir)

An international research team led by Florian Zellweger at the University of Cambridge and the WSL in Switzerland has now come up with the first concrete figures on climate warming under the forest canopy, thus also showing how warming in the forest differs from warming in open spaces. To obtain these results, and colleagues measured the temperature in the forest interior at 100 sites and combined these measurements in a computer model with up to 80 years of data on the density of the forest canopy. This latter series comprised data taken from almost 3,000 locations within the framework of long-term observation programmes.

Writing in the journal Science, the researchers report that climate warming measurements taken in open spaces do not sufficiently reflect changes in temperature under the leaf canopy. If the tree canopy is denser, it buffers climate warming for the organisms living beneath it. If it becomes sparser, the temperature below it rapidly surges.

Hemispherical photograph of a beech forest. The denser the canopy, the greater the cooling effect in the understorey and on the forest floor. (Photo: Pieter de Frenne)

Lag in climate adaptation

The forest canopy creates locally different climatic conditions, which is vitally important for forest life. Anemones in the Lehnflue near Oensingen in the canton of Solothurn. (Photo: Markus Bolliger)

All organisms have an optimum temperature at which they thrive best. When the climate warms, warm-affinity species benefit and displace cold-affinity species, which may, for instance, move to higher mountain areas. However, the optimum temperature for forest organisms is significantly lower than actual measured temperatures: these organisms are therefore lagging behind when it comes to climate adaptation. “In the context of global climate change, many species live in an increasingly suboptimal temperature range,” notes David Coomes, senior author of the study.

Consequently, if the protective tree canopy is lost – whether naturally or as a result of human intervention – the plants living beneath it experience additional drastic warming for which they are ill prepared. Their previously cool, shady and generally more humid habitat is suddenly exposed to the intense heat far more often and for longer periods, and the soil also dries out. Many species cannot adapt quickly enough, are displaced by warm-affinity species and may die out locally. Given the expected increase in summer heatwaves in Europe, this is likely to transform forest biodiversity and may “spell trouble for individual species” according to Zellweger. Forest managers should therefore take account of the effects of forestry work on the climatic conditions in the forest interior and of the work’s impact on biodiversity.

Links to paper:


A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests

Logging and habitat fragmentation impact tropical forest ecosystems in numerous ways, perhaps the most striking of which is by altering the temperature, humidity, and light environment of the forest—its microclimate. Because local-scale microclimatic conditions directly influence the physiology, demography and behavior of most species, many of the impacts of land-use intensification on the biodiversity and ecosystem functioning of tropical forests have been attributed to changes in microclimate. However, the actual pathways through which altered microclimatic conditions reshape the ecology of these human-modified ecosystems remain largely unexplored. To bridge this knowledge gap, here we outline an agenda for future microclimate research in human-modified tropical ecosystems. We focus specifically on three main themes: the role of microclimate in shaping (i) species distributions, (ii) species interactions, and (iii) ecosystem functioning in tropical forests. In doing so we aim to highlight how a renewed focus on microclimate can help us not only better understand the ecology of human-modified tropical ecosystems, but also guide efforts to manage and protect them.
Jucker (2020), Front. For. Glob. Change